USAHA DAN ENERGI
Energy Kinetik Rotasi
Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2. Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :
MA VA + MB VB = MA VA + MB VB
VA dan VB = kecepatan benda A dan B pada saat tumbukan
VA dan VB = kecepatan benda A den B setelah tumbukan.
Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.
Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,
a. ELASTIS SEMPURNA : e = 1
e = (- VA' - VB')/(VA - VB)
e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.
b. ELASTIS SEBAGIAN: 0 <>Disini hanya berlaku hukum kekekalan momentum.
Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:
e = h'/h
h = tinggi benda mula-mula
h' = tinggi pantulan benda
C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',
MA VA + MB VB = (MA + MB) v'
Disini hanya berlaku hukum kekekalan momentum
Prinsip kerja dari roket berbahan bakar cair dan padat sama, di mana hasil pembakaran menghasilkan gaya dorong ke atas. Kelebihan dari roket berbahan bakar padat mampu menyimpan bahan bakar dengan dengan jumlah besar untuk ruang penyimpanan yang sama, karena telah dipadatkan, sedangkan bahan bakar cair tidak bisa dimampatkan.
DINAMIKA ROTASI

MOMEN GAYA ( t ) adalah gaya kali jarak/lengan.
Arah gaya dan arah jarak harus tegak lurus.
Untuk benda panjang:
| Untuk benda berjari jari:
|
R = jari-jari
I = lengan gaya terhadap sumbu
I = m . R2 = momen inersia benda
a = percepatan sudut / angular
Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.
Definisi skalar
Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:Analisis
Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh- V adalah volume yang ditempati objek
- ρ adalah fungsi kerapatan spasial objek
- r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.
- M adalah massa
- R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
- k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.
- k = 1, cincin tipis atau silinder tipis di sekeliling pusat
- k = 2/5, bola pejal di sekitar pusat
- k = 1/2, silinder atau piringan pejal di sekitar pusat.
Titik Pusat Massa dan Titik (Pusat) Berat








Jenis Keseimbangan


| |
|

Fluida ( zat alir ) adalah zat yang dapat mengalir, misalnya zat cair dan gas. Fluida dapat digolongkan dalam dua macam, yaitu fluida statis dan dinamis.
Tekanan hidrostatis ( Ph) adalah tekanan yang dilakukan zat cair pada bidang dasar tempatnya.
PARADOKS HIDROSTATIS
Gaya yang bekerja pada dasar sebuah bejana tidak tergantung pada bentuk bejana dan jumlah zat cair dalam bejana, tetapi tergantung pada luas dasar bejana ( A ), tinggi ( h ) dan massa jenis zat cair ( r )
dalam bejana.
Ph = r g h
Pt = Po + Ph F = P h A = r g V | r = massa jenis zat cair
h = tinggi zat cair dari permukaan g = percepatan gravitasi Pt = tekanan total Po = tekanan udara luar |
Tekanan yang dilakukan pada zat cair akan diteruskan ke semua arah sama.
P1 = P2 ® F1/A1 = F2/A2
HUKUM ARCHIMEDES
Benda di dalam zat cair akan mengalami pengurangan berat sebesar berat zat cair yang dipindahkan.
Tiga keadaan benda di dalam zat cair:
a. tenggelam: W>Fa Þ rb > rz
b. melayang: W = Fa Þ rb = rz c. terapung: W=Fa Þ rb.V=rz.V' ; rb<rz |
Fa = gaya ke atas = rz . V' . g
rb = massa jenis benda
rz = massa jenis fluida
V = volume benda
V' = volume benda yang berada dalam fluida
Akibat adanya gaya ke atas ( Fa ), berat benda di dalam zat cair (Wz) akan berkurang menjadi:
Wz = W - Fa
Wz = berat benda di dalam zat cair
TEGANGAN PERMUKAAN
Tegangan permukaan ( g) adalah besar gaya ( F ) yang dialami pada permukaan zat cair persatuan panjang(l)
g = F / 2l
KAPILARITAS
Kapilaritas ialah gejala naik atau turunnya zat cair ( y ) dalam tabung kapiler yang dimasukkan sebagian ke dalam zat cair karena pengarah adhesi dan kohesi.
y = kenaikan/penurunan zat cair pada pipa (m)
g = tegangan permukaan (N/m)
q = sudut kontak (derajat)
p = massa jenis zat cair (kg / m3)
g = percepatan gravitas (m / det2)
r = jari-jari tabung kapiler (m)
FLUIDA DINAMIS
Sifat Fluida Ideal:
- tidak dapat ditekan (volume tetap karena tekanan)
- dapat berpindah tanpa mengalami gesekan
- mempunyai aliran stasioner (garis alirnya tetap bagi setiap partikel)
- kecepatan partikel-partikelnya sama pada penampang yang sama
HUKUM BERNOULLI
Hukum ini diterapkan pada zat cair yang mengalir dengan kecepatan berbeda dalam suatu pipa.
P + r g Y + 1/2 r v2 = c P = tekanan 1/2 r v2 = Energi kinetik r g y = Energi potensial | ]® tiap satuan waktu | |
CEPAT ALIRAN (DEBIT AIR)
Cepat aliran (Q) adalah volume fluida yang dipindahkan tiap satuan waktu.
Q = A . v
A1 . v1 = A2 . v2
v = kecepatan fluida (m/det)
A = luas penampang yang dilalui fluida
Untuk zat cair yang mengalir melalui sebuah lubang pada tangki, maka besar kecepatannya selalu dapat diturunkan dari Hukum Bernoulli, yaitu:
v = Ö(2gh) |
h = kedalaman lubang dari permukaan zat cair
|
1. Sebuah kolam air berdinding bujursangkar dengan panjang 15 m, tingginya 7,5m.Tentukanlah tekanan air 4,5 m di bawah permukaan air!
Jawab:
P = r . g . h = 103 . 10 . 4,5
P = 4,5.104 N/m2
2. Air mengalir sepanjang pipa horisontal, penampang tidak sama besar. Pada tempat dengan kecepatan air 35 cm/det tekanannya adalah 1 cmHg. Tentukanlah tekanan pada bagian pipa dimana kecepatan aliran airnya 65 cm/det.(g = 980 cm/det2) !
Jawab:
P1 = 1 cmHg = 1.13,6.980 dyne/cm2
P1 = 13328 dyne/cm2
v1 = 35 cm/det; v2 = 65 cm/det
P1 + pgy1 + 1/2rv12 = P2 + rgy2 + 1/2rv22
Karena y1 = y2 (pipa horisontal), maka:
P1 - P2 = 1/2 r (V22 - V12)
P1 - P2 = 1/2 1 (652 352)
P1 - P2 = 1/2 3000
P1 - P2 = 1500 dyne/cm2
Jadi:
P2 = P1 - 1500
P2 = 13328 - 1500
P2 = 11828 dyne/cm
P2 = 0,87 cmHg
HUKUM ARCHIMIDES
Apabila benda yang dimasukkan ke dalam fluida, terapung, di mana bagian benda yang tercelup hanya sebagian maka volume fluida yang dipindahkan = volume bagian benda yang tercelup dalam fluida tersebut. Tidak peduli apapun benda dan bagaimana bentuk benda tersebut, semuanya akan mengalami hal yang sama. Ini adalah buah karya eyang butut Archimedes (287-212 SM) yang saat ini diwariskan kepada kita dan lebih dikenal dengan julukan “Prinsip Archimedes”. Prinsip Archimedes menyatakan bahwa :
Ketika sebuah benda tercelup seluruhnya atau sebagian di dalam zat cair, zat cair akan memberikan gaya ke atas (gaya apung) pada benda, di mana besarnya gaya ke atas (gaya apung) sama dengan berat zat cair yang dipindahkan.
PERSAMAAN TEGANGAN PERMUKAAN
Jika kawat U dimasukan ke dalam larutan sabun, maka setelah dikeluarkan akan terbentuk lapisan air sabun pada permukaan kawat tersebut. Mirip seperti ketika dirimu bermain gelembung sabun. Karena kawat lurus bisa digerakkan dan massanya tidak terlalu besar, maka lapisan air sabun akan memberikan gaya tegangan permukaan pada kawat lurus sehingga kawat lurus bergerak ke atas (perhatikan arah panah). Untuk mempertahankan kawat lurus tidak bergerak (kawat berada dalam kesetimbangan), maka diperlukan gaya total yang arahnya ke bawah, di mana besarnya gaya total adalah F = w + T. Dalam kesetimbangan, F = gaya tegangan permukaan yang dikerjakan oleh lapisan air sabun pada kawat lurus.
Misalkan panjang kawat lurus adalah l. Karena lapisan air sabun yang menyentuh kawat lurus memiliki dua permukaan, maka gaya tegangan permukaan yang ditimbulkan oleh lapisan air sabun bekerja. Tegangan permukaan pada lapisan sabun merupakan perbandingan antara Gaya Tegangan Permukaan (F) dengan panjang permukaan di mana gaya bekerja (d). Untuk kasus ini, panjang permukaan adalah 2l.
Karena tegangan permukaan merupakan perbandingan antara Gaya tegangan permukaan dengan Satuan panjang, maka satuan tegangan permukaan adalah Newton per meter (N/m) atau dyne per centimeter (dyn/cm).
1 dyn/cm = 10-3 N/m = 1 mN/m
TERMODINAMIKA
Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.
Hukum kekekalan energi adalah salah satu dari hukum-hukum kekekalan yang meliputi energi kinetik dan energi potensial. Hukum ini adalah hukum pertama dalam termodinamika.
Asas Black adalah suatu prinsip dalam termodinamika yang dikemukakan oleh Joseph Black. Asas ini menjabarkan:
* Jika dua buah benda yang berbeda yang suhunya dicampurkan, benda yang panas memberi kalor pada benda yang dingin sehingga suhu akhirnya sama
* Jumlah kalor yang diserap benda dingin sama dengan jumlah kalor yang dilepas benda panas
* Benda yang didinginkan melepas kalor yang sama besar dengan kalor yang diserap bila dipanaskan
Rumus Asas Black =
(M1 X C1) (T1-Ta) = (M2 X C2) (Ta-T2)
Catatan :
M1 = Massa benda yang mempunyai tingkat temperatur lebih tinggi
C1 = Kalor jenis benda yang mempunyai tingkat temperatur lebih tinggi
Ta = Temperatur benda yang mempunyai tingkat temperatur lebih tinggi
T1 = Temperatur akhir pencampuran kedua benda
M2 = Massa benda yang mempunyai tingkat temperatur lebih rendah
C2 = Kalor jenis benda yang mempunyai tingkat temperatur lebih rendah
T2 = Temperatur benda yang mempunyai tingkat temperatur lebih rendah
HUKUM I TERMODINAMIKA
Hukum Kekekalan Energi (Hukum I Termodinamika) berbunyi: "Energi dapat berubah dari satu bentuk ke bentuk yang lain tapi tidak bisa diciptakan ataupun dimusnahkan (konversi energi)".
Keterangan :
delta U = Perubahan energi dalam
Q = Kalor
W = Kerja
Hukum pertama termodinamika merupakan pernyataan Hukum Kekekalan Energi dan ketepatannya telah dibuktikan melalui banyak percobaan (seperti percobaan om Jimi Joule). Perlu diketahui bahwa hukum ini dirumuskan pada abad kesembilan belas, setelah kalor dipahami sebagai energi yang berpindah akibat adanya perbedaan suhu.
HUKUM II TERMODINAMIKA
Kalor berpindah dengan sendirinya dari benda bersuhu tinggi ke benda bersuhu rendah; kalor tidak akan berpindah dengan sendirinya dari benda bersuhu rendah ke benda bersuhu tinggi (Hukum kedua termodinamika
Sabtu, 05 Desember 2009
Materi Fisika Kelas XI Semester 1
1. PERSAMAAN GERAK
Koordinat Polar Titik P dengan koordinat polar (r, q) berarti berada diposisi: - q derajat dari sumbu-x (sb. polar) (q diukur berlawanan arah jarum-jam) - berjarak sejauh r dari titik asal kutub O. Perhatian: jika r <> r: koordinat radial q: koordinat sudut Setiap titik mempunyai lebih dari satu representasi dalam koordinat polar (r, q) = (- r, q + np ), untuk n bil. bulat ganjil = ( r, q + np ) , untuk n bil. bulat genap Persamaan dalam Koordinat Polar Pers. polar dari lingkaran berjari-jari a: r = a Untuk lingkaran berjari a, - berpusat di (0,a): r = 2a sin q - berpusat di (a,0): r = 2a cos q r = 2 sin q r = 2 cos qVektor posisi, kecepatan dan percepatan. V adalah kecepatan benda yang merupakan turunan pertama dari posisi. Jadi Vx adalah turunan pertama dari X dan Vy adalah turunan pertama dari Y. Silakan kamu turunkan (diferensialkan) persamaan tersebut... Vox adalah Vx saat t = 0, dan Voy adalah Vy saat t = 0. Vo adalah penjumlahan (secara vektor) dari Vox dan Voy. Ax adalah turunan kedua dari X, dan Ay adalah turunan kedua dari Y. Coba kamu turunkan sendiri.... Aox adalah Ax saat t = 0, dan Aoy adalah Ay saat t = 0.Mengubah persamaan posisi menjadi percepatanA :Jika posisi benda dinyatakan dalam persamaan dengan variable waktu, maka persamaan posisi tersebut kita turunkan (diferensialkan) menjadi persamaan kecepatan. misal, x = 2t^2 - 2t maka kecepatannya adalah turunan pertama dari x; v = dx/dt = 4t - 2 untuk mengubah menjadi percepatan, maka kecepatan tersebut kita turunkan sekali lagi; a = dv/dt = 4

Tampak dari grafik pada gambar 6,
kecepatan benda sama dari waktu ke waktu yakni 5 m/s.
Semua benda yang bergerak lurus beraturan akan memiliki grafik v - t yang bentuknya seperti gambar 6 itu. Sekarang,hitung berapa jarak yang ditempuh oleh benda dalam waktu 3 s?
dapat dihitung jarak yang ditempuh oleh benda dengan cara menghitung luas daerah di bawah kurva bila diketahui grafik (v-t) :

Cara menghitung jarak pada GLB.Tentu saja satuan jarak adalah satuan panjang, bukan satuan luas. Berdasarkan gambar di atas, jarak yang ditempuh benda = 15 m. Cara lain menghitung jarak tempuh adalah dengan menggunakan persamaan GLB.
kecepatan pada GLB dirumuskan:

v = 5 m/s,sedangkan t = 3 s, sehingga jarak s = v . ts = 5 x 3 = 15 m
Persamaan GLB di atas, berlaku bila gerak benda memenuhi grafik seperti pada gambar.
Pada grafik tersebut terlihat bahwa pada saat t = 0 s, maka v = 0.
Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal so. Untuk keadaan ini, maka persamaan GLB sedikit mengalami perubahan menjadi,
s = so + v.
Persamaan GLB untuk benda yang sudah bergerak sejak awal pengamatan.
Dengan so menyatakan posisi awal benda dalam satuan meter.
Di samping grafik v - t di atas, pada gerak lurus terdapat juga grafik s-t, yakni grafik yang menyatakan hubungan antara jarak tempuh (s) dan waktu tempuh (t) seperti pada gambar di bawah.

a. 3 s
b. 10 s
so = 2 m
v = 4 m/s
Ditanya:
a. Jarak yang ditempuh benda pada saat t = 3 s.
b. Jarak yang ditempuh benda pada saat t = 10 s.
Jawab:
a. | s (t)
s (3s) | = so + v.t
= 2 + 4 x 3 = 14 m |
b. | s (t)
s (10s) | = so + v.t
= 2 + 4 x 10 = 42 m |
v1 = vo
v2 = vt t1 = 0
t2 = t
atau a.t = vt - vo kita dapatkan :
persamaan kecepatan GLBB :

vt = kecepatan akhir (m/s)
a = percepatan (
t = selang waktu (s) kecepatan benda berubah dari vo menjadi vt sehingga kecepatan rata-rata benda dapat dituliskan:

b. Kecepatan rata-rata :

Benda yang semula diam didorong sehingga bergerak dengan percepatan tetap 3
Penyelesaian:
Berapakah besar kecepatan benda itu setelah bergerak 5 s? Awalnya benda diam, jadi vo = 0 a = 3 t = 5 s Kecepatan benda setelah 5 s: | ||
vt | = vo + a.t
= 0 + 3 . 5 = 15 m/s |
# GERAK MELINGKAR BERUBAH BERATURAN #
Adalah gerak suatu benda dengan bentuk lintasan melingkar dan besar percepatan sudut/anguler (α) konstan.
1. Percepatan Anguler (α)
Dan perubahan waktu kecepatan anguler adalah Δt, maka di dapatkan :

∆t = selang waktu (s)
α = percepatan sudut/anguler (rads-2)
Sama halnya dengan Gerak Lurus Berubah Beraturan (GLBB), pada GMBB berlaku juga :
θ= ω0 t ± α.t2
x = R. θ
Dapat diperoleh juga :
ωt2 = ω02 ± 2 α.θ
ω0 = kecepatan sudut/anguler keadaan awal (rad/s)
θ = besar sudut yang ditempuh (radian, putaran)
1 rpm = 1 putaran permenit
1 putaran = 360° = 2p

x = perpindahan linier (m)
t = waktu yang diperlukan (s)
R = jari-jari lintasan (m)
Besaran fisis pada GMB
a. Besaran Sudut (Ø)

Besar sudut Ø dinyatakan dalam derajat tetapi pada gerak melingkar beraturan ini dinyatakan dalam radian. Satu radian (rad) adalah sudut dimana panjang busur lingkaran sama dengan jari-jari lingkaran tersebut (r). Jika s = r, Ø bernilai 1 rad.

Secara umum besaran sudut Ø dituliskan :
Ø = s / r
dimana s = 2∏ r , sehingga Ø = 2∏ rad
b. Kecepatan dan kelajuan Sudut (ω)

Pada gerak melingkar, besaran yang menyatakan seberapa jauh benda berpindah (s) dalam selang waktu tertentu (t) disebut kecepatan anguler atau kecepatan sudut (ω). Kecepatan sudut ini terbagi atas kecepatan sudut rata-rata dan kecepatan sudut sesaat.

Kecepatan sudut rata-rata dituliskan sebagai : ω = ΔØ / Δt
Kecepatan sudut sesaat dinyatakan sebagai ω = lim ΔØ / Δt
Satuan kecepatan sudut adalah rad/s. Selain satuan ini, satuan kecepatan sudut dapat pula ditulis dalam rpm (rotation per minutes) dimana 1 rpm = 2Π rad/menit = Π/30 rad/s.
Sedangkan nilai atau besarnya kecepatan sudut disebut kelajuan sudut.
c. Periode (T)
Waktu yang dibutuhkan oleh suatu benda untuk bergerak satu putaran disebut periode (T). Waktu yang dibutuhkan untuk menempuh satu putaran dinyatakan oleh :
T = perpindahan sudut / kecepatan sudut
T = 2Π / ω dimana 2Π = perpindahan sudut (anguler) untuk satu putaran.
Jika jumlah putaran benda dalam satu sekon dinyatakan sebagai frekuensi (f) maka diperoleh hubungan :
T = 1 / f dimana f = frekuensi dengan satuan 1/s atau Hertz (Hz).
d. Kecepatan dan kelajuan linear (v)

Kecepatan linear didefinisikan sebagai hasil bagi panjang lintasan linear yang ditempuh dengan selang waktu tempuhnya. Panjang lintasan dalam gerak melingkar yaitu keliling lingkaran 2Π.r
Jika selang waktu yang diperlukan untuk menempuh satu putaran adalah 1 periode (T), maka :
Kecepatan linear dirumuskan : v = 2Π.r / T atau v = ω.r
Kecepatan linear ( v) memiliki satuan m/s, r = jari-jari lintasan, dengan satuan meter dan ω = kecepatan sudut dalam satuan rad/s
e. Percepatan Sentripetal

Pada saat anda mempelajari gerak lurus beraturan sudah mengetahui bahwa percepatan benda sama dengan nol. Benarkah kalau kita juga mengatakan percepatan benda dalam gerak melingkar beraturan sama dengan nol? Dari gambar di atas diketahui bahwa arah kecepatan linear pada gerak melingkar beraturan selalu menyinggung lingkaran. Karena itu, kecepatan linear disebut juga kecepatan tangensial.
Sekarang kita akan mempelajari apakah vektor percepatan pada benda yang bergerak melingkar beraturan nol atau tidak.Dari gambar di atas tampak bahwa vektor kecepatan linear memiliki besar sama tetapi arah berbeda-beda. Oleh karena itu kecepatan linear selalu berubah sehingga harus ada percepatan. Dari gambar di atas tampak bahwa arah percepatan selalu mengarah ke pusat lingkaran dan selalu tegak lurus dengan kecepatan linearnya. Percepatan yang selalu tegak lurus terhadap kecepatan linearnya dan mengarah ke pusat lingkaran ini disebut percepatan sentripetal.
Percepatan sentripetal pada gerak melingkar beraturan dirumuskan :

Contoh Soal :
Sebuah roda dengan jari-jari 20 cm, berputar pada sumbunya dengan kelajuan 6.000/Π rpm. Tentukan: (a). kelajuan sudut, frekuensi, dan periodenya, (b). kelajuan linear sebuah titik atau dop pada roda dan panjang lintasan titik yang ditempuh selama 10 s. (c) jumlah putaran dalam 10 s.
Pembahasan :
1. diketahui : r = 20 cm = 0,2 m ; ω = 6.000/Π rpm = 100/Π rps = 200 rad/s
dijawab :
(a). Frekuensi f = ω / 2Π = (200 rad/s)/2Π = 100/Π Hz
(b). Kelajuan linear pada titik luar
v = ω . r = (200 rad/s). (0,2 m) = 40 m/s
(c) Jumlah putaran selama 10 s. Sudut yang ditempuh selama 10 s adalah Ø = ω . t = 2.000 rad
1 putaran = 2Π rad sehingga jumlah putaran (n) adalah n = 2.000 rad/2Π =(1000/Π ) putaran.
2. Sebuah benda bergerak melingkar beraturan dengan jari-jari lintasan 70 cm. Dalam waktu 20 s, benda tersebut melakukan putaran sebanyak 40 kali. (a). tentukan periode dan frekuensi putaran. (b) berapa laju linear benda tersebut? (c). hibunglah kecepatan sudut benda tersebut.


Arah gaya normal selalu tegak lurus dengan permukaan sentuh.


b. Gaya Gesekan
Besarnya gaya ini:

µs = koefisien gesek statis
N = Besarnya gaya normal pada benda

µk = koefisien gesek kinetic
N = Gaya normal benda, Newton
c. Gaya Sentripetal
Hukum Gravitasi Universal Newton
- Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
- F adalah besar dari gaya gravitasi antara kedua massa titik tersebut
- G adalah konstanta gravitasi
- m1 adalah besar massa titik pertama
- m2 adalah besar massa titik kedua
- r adalah jarak antara kedua massa titik

Hukum II Newton

Jawab :
F = m.a = 500 . 6 = 3000 N
Hukum III Newton (Hukum aksi dan reaksi)
Introduksi Tiga Hukum Kepler
Secara Umum
Hukum Pertama
- "Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."
Hukum Kedua
- "Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."

Hukum Ketiga
- "Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."
Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?
Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:
dengan,
k = konstanta pegas
Fp = Gaya Pemulih (N)
x = Perpanjangan Pegas (m)
Persamaan inilah yang disebut dengan Hukum Hooke. Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan arah perpanjangan.
3. Elastisitas dan Hukum Hooke
Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?
- Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:
dengan,
k = konstanta pegas
Fp = Gaya Pemulih (N)
x = Perpanjangan Pegas (m) - Modulus Elastisitas Yang dimaksud dengan Mosdulus Elastisitas adalah perbandingan antara tegangan dan regangan. Modulus ini dapat disebut dengan sebutan Modulus Young.
- Tegangan (Stress)
Tegangan adalah gaya per satuan luas penampang. Satuan tegangan adalah N/m2 Secara matematis dapat dituliskan: - Regangan (Strain)
Regangan adalah perbandingan antara pertambahan panjang suatu batang terhadap panjang awal mulanya bila batang itu diberi gaya. Secara matematis dapat dituliskan:
Dari kedua persamaan di atas dan pengertian modulus elastisitas, kita dapat mencari persamaan untuk menghitung besarnya modulus elastisitas, yang tidak lain adalah: Satuan untuk modulus elastisitas adalah N/m2 - Tegangan (Stress)
- Gerak Benda di Bawah Pengaruh Gaya Pegas Bila suatu benda yang digantungkan pada pegas ditarik sejauh x meter dan kemudian dilepas, maka benda akan bergetar. Percepatan getarnya itu dapat dihitung dengan persamaan:
Dari persamaan di atas, kita mengetahui bahwa besarnya percepatan getar (a) sebanding dan berlawanan arah dengan simpangan (x).

- Untuk menghitung besarnya simpangan pada gerak harmonis sederhana digunakan rumus:
atau
dengan:
y = simpangan (m)
A = amplitudo atau simpangan maksimum (m)
t = waktu getar (s)
w = kecepatan sudut (rad/s)
Simpangan akan bernilai maksimum (ymaks) jika sin wt = 1 sehingga persamaannya menjadi: - Kecepatan GHS Besarnya kecepatan gerak harmonis dapat dicari dengan persamaan:
- Percepatan GHS Besarnya percepatan pada gerak harmonis sederhana dapat dihitung dengan rumus:
atau
- Beda fase getaran suatu titik dengan selang waktu t= t1 dan t= t2
Persamaan yang dipakai untuk menghitung besarnya beda fase dengan selang waktu dari t1 sampai t2 adalah:
- Beda fase dua getaran pada waktu sama
Kita juga dapat menghitung beda fase dua getaran pada waktu yang sama. Misalkan dua getaran masing - masing dengan periode T1 dan T2 maka beda fase keduanya setelah bergetar selama t sekon dapat dicari dengan persamaan:
Dua kedudukan tersebut akan dikatan sefase bila nilai beda fase merupakan bilangan cacah (tanpa pecahan ataupun desimal). Sebaliknya kedudukan akan dikatakan berlawanan fase apabila nilai beda fase berupa bilangan cacah+1/2(dengan pecahan ataupun desimal).
Sudut Fase, Fase, dan Beda Fase GHSBerdasarkan dari persamaan simpangan:
bila diturunkan akan menjadi,Fase atau tingkat getar adalah sudut fase dibagi dengan sudut tempuh selama satu putaran penuh. Sehingga besarnya fase dapat dihitung dari persamaan:Pembahasan tentang fase dibagi menjadi dua, yaitu:-
- Superposisi Dua Simpangan Gerak Harmonis yang Segaris Jika ada dua persamaan simpangan yang dialami oleh suatu partikel pada saat yang sama, maka simpangan akibat kedua getaran dapat dicaari dengan dua cara, yaitu secara grafis dan secara maematis. Berikut adalah pembahasan mengenai kedua cara tersebut.
- Secara Grafis Berikut adalah gambar Superposisi dua gerak harmonis sederhana,
- Secara Matematis Dalam perhitungan secara matematis dua gerak harmonis memiliki simpangannya masing - masing. Untuk mencari simpangan superposisinya maka kedua simpangan itu dijumlahkan (y = y1 + y2) sehingga didapatkan persamaan sebagai berikut:
- Secara Grafis
- Penurunan Rumus Periode (T) dan Frekuensi (f) Dalam pembahasan suba bab ini, kita akan membahasa mengenai Periode (T) dan frekuensi (f). Dalam bahasan ini, akan membahas pula mengenai gaya pemulih. Karena itu, pembahasannya akan dibatasi hanya sampai pada pegas dan ayunan sederhana.
- Pegas Dalam pegas untuk perhitungan Periodenya digunakan rumus:
sedangkan besarnya frekuensi berbanding terbalik dengan periodenya ( f = 1/T), sehingga didapatkan rumus frekuensi sebagai berikut: Sedangkan bila konstanta pegas belum diketahui, konstatanya dapat dihitung dengan persamaan:
dengan,
m = massa beban (kg)
k = konstanta pegas (N/m) Bila pegas yang dipakai lebih dari satu, maka untuk mencari konstantanya harus menggunakan konstanta total. Untuk menghitung konstanta total tergantung dari rangkaian pegas itu sendiri. Bila beberapa pegas dirangkai secara seri, maka untuk mencari konstanta totalnya mengunakan rumus:
dengan,
g = gaya gravitasi (9,8 N/kg atau 10 N/kg)
x = perpanjangan pegas (m) Sedangkan untuk pegas yang dirangkai paralel mengunakan rumus: - Ayunan Sederhana Sedangkan dalam ayunan sederhana untuk mencari besarnya Periode digunakan rumus:
Kemudian dalam mencari frekuensi, karena nilai frekuensi berbanding terbalik dengan periode maka didapatkan rumus:
dengan,
l = panjang tali (m)
g = gaya gravitasi bumi (m/s2)
- Pegas
sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas tuntas dalam pokok bahasan tersendiri.
6. MOMENTUM, IMPULS, DAN TUMBUKAN
Definisi Momentum
Momentum adalah sebuah nilai dari perkalian materi yang bermassa / memiliki bobot dengan pergerakan / kecepatan. Dalam Fisika momentum dilambangkan dengan huruf ‘p’, secara matematis momentum dapat dirumuskan :
p= m . v
p = momentum, m = massa, v = kecepatan / viscositas (dalam fluida)
Momentum akan berubah seiring dengan perubahan massa dan kecepatan. Semakin cepat pergerakan suatu materi/benda akan semakin besar juga momentumnya. Semakin besar momentum, maka semakin dahsyat kekuatan yang dimiliki oleh suatu benda. Jika materi dalam keadaan diam, maka momentumnya sama dengan nol. Sebaliknya semakin cepat pergerakannya, semakin besar juga momentumnya. (Filosofi : Jika manusia tidak mau bergerak / malas, maka hasil kerjanya sama dengan nol).
Definisi Impuls
Impuls adalah selisih dari momentum atau momentum awal dikurangi momentum akhir. Dalam Fisika impuls dilambangkan dengan simbol / huruf "I". Secara matematis impuls dirumuskan :
I = p2 – p1 = ∆p
I = m.v2 – m.v1
I = m(v2 – v1)
I = m. ∆v
Karena m = F/a (bisa dibaca di Aplikasi Hukum Newton Dalam Kehidupan) , maka :
I = F/a . ∆v
I = [F/(∆v/∆t)] . ∆v
I = F . ∆t
F = I/∆t
I = impuls, p1 = momentum awal, p2 = momentum akhir, F = gaya, ∆t = waktu sentuh, ∆v = selisih kecepatan
Nah, dari rumus F = I/∆t inilah letak pemanfaatan aplikasi momentum dan impuls. Semakin kecil waktu sentuh, maka semakin besar gaya yang akan diterima benda. Semakin lama waktu sentuh, maka semakin kecil gaya yang diterima benda.
Aplikasi Momentum dan Impuls
Mobil di desain untuk mudah penyok, hal ini bertujuan untuk memperbesar waktu sentuh untuk memperkecil gaya yang diterima oleh pengendara. Dengan demikian diharapkan, keselamatan pengemudi lebih dapat terjamin. Jika kecepatannya besar, maka gaya yang diterima akan besar, sehingga pengendara akan mengalami kecelakaan yang fatal. Jadi pesan saya jangan ngebut, walaupun mobil sudah di design sedemikian rupa.
Balon udara pada mobil juga bertujuan untuk memperlambat waktu sentuh antara kepala pengemudi dengan setir mobil. Ingat, semakin besar waktu sentuh, maka semakin kecil gaya yang akan mengenai kepala pengemudi. Sabuk pengaman juga fungsi dan cara kerjanya sama dengan balon udara pada mobil, yakni untuk mengurangi waktu sentuh antara pengemudi dengan dashboard mobil pada saat bersentuhan.
semog berguna...
neutron3377 18p · 657 weeks ago
Rahayu Wahyu · 644 weeks ago
dharmatasia 1p · 642 weeks ago
Jabbawockeez II · 637 weeks ago
Yoshita sinta devy · 637 weeks ago
Nurul Hikmah · 636 weeks ago
Niesa Rusnawati · 633 weeks ago
makasih sangat membantu :))
pratiwi kristianti · 608 weeks ago
izin copas jga ya..
Jaya · 572 weeks ago
devi · 541 weeks ago